
Shader-Driven Compilation of Rendering Assets

Paul Lalonde Eric Schenk

Electronic Arts (Canada) Inc.

Abstract

Rendering performance of consumer graphics hardware benefits
from pre-processing geometric data into a form targeted to the un-
derlying API and hardware. The various elements of geometric data
are then coupled with a shading program at runtime to draw the as-
set.

In this paper we describe a system in which pre-processing is
done in a compilation process in which the geometric data are pro-
cessed with knowledge of their shading programs. The data are
converted into structures targeted directly to the hardware, and a
code stream is assembled that describes the manipulations required
to render these data structures. Our compiler is structured like a
traditional code compiler, with a front end that reads the geomet-
ric data and attributes (hereafter referred to as anart asset) output
from a 3D modeling package and shaders in a platform indepen-
dent form and performs platform-independent optimizations, and a
back end that performs platform-specific optimizations and gener-
ates platform-targeted data structures and code streams.

Our compiler back-end has been targeted to four platforms, three
of which are radically different from one another. On all platforms
the rendering performance of our compiled assets, used in real sit-
uations, is well above that of hand-coded assets.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation; I.3.6 [Computer Graphics]: Methodology
and Techniques—Languages; I.3.8 [Computer Graphics]:
Applications—Computer Games; D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application
languages

Keywords: Computer Games, Graphics Systems, Rendering, Ren-
dering Systems

1 Introduction

The most recent generations of consumer level graphics hardware,
found in such consumer devices as the Sony PlayStation2TM, Mi-
crosoft XBoxTM, and Nintendo GameCubeTM, as well as in per-
sonal computers, have brought high end real-time graphics to the
consumer at large. This hardware exists principally for use in video
games, and this is reflected in the hardware architectures.

In consumer applications such as video games the topology of
most graphical elements is fixed, unlike the case of modeling appli-
cations, such as Alias|Wavefront MayaTM, SoftImage XSITM, and

3D Studio MaxTM. Hardware designers, both of game consoles
and of graphics accelerator chipsets, have exploited this and have
designed their hardware to be most efficient at rendering large con-
stant sets of geometry than at rendering individual polygons. This is
reflected in the APIs used: both Microsoft’s DirectX 8 [Microsoft
2000] and OpenGL 1.1 and later [OpenGL Architecture Review
Board et al. 1999] support calls for setting up arrays of input data
(vertices, colours, and other per-vertex attributes, as well as index
lists) that are much more efficient than single-polygon submissions.
Further, groups of polygons and other rendering attributes can be
collected into display lists for later atomic submission, also at much
higher performance than single polygon submissions.

In a consumer application, art asset authoring is part of the de-
velopment cycle. The assets are pre-processed using some set of
tools into a form suitable for both the hardware and the software
architecture of the application. The data pre-processes typically
manipulate only the geometric elements. Setting other elements of
rendering state, such as lighting, vertex and pixel shader selections,
rasterization control, transformation matrices, and so forth, as well
as the selection of vertex buffers and vertex layouts are handled in
the runtime engine. This requires much of the knowledge about
the use of the art asset to reside in code, tying the art asset closely
to the programmer. Programmers often attempt to generalize this
code to deal with multiple assets, at the expense of efficiency. Al-
though shader compilers have been explored as a partial solution to
this problem, no one has yet exploited knowledge of the shader to
systematically optimize rendering.

Our system was driven by the following requirements:
• to render fixed topology objects efficiently with fixed shading

effects;
• to support runtime modifications to the objects we draw, but

not modification of their topologies;
• to exploit hardware capabilities such as vertex programs, and

pixel shaders [Microsoft 2000]; and
• to have user code and art assets that are portable across hard-

ware platforms.
We have designed and implemented a real-time rendering system

comprised of a small, efficient runtime engine with a portable API,
and a modular retargetable art asset compiler, called EAGL, the
Electronic Arts Graphics Library. The runtime has been developed
both on top of existing graphics APIs and at the driver level. An
art asset is authored in some geometric modeling package, such as
Alias|Wavefront Maya, 3D Studio Max, or SoftImage XSI. The as-
set consists of its geometry, its per-vertex attributes, and its collec-
tion of materials (surface properties, colours, texture map usages,
etc.) and textures. The asset description is sufficiently rich that
the object can be rendered as it should appear on final use without
programmer intervention.

The EAGL architecture is based on separating the rendering
primitive description from the runtime using a shader language that
describes not only the shader program, but the semantics of the in-
put data to the shader. These augmented shaders are calledrender
methodsand a single art asset may reference many. Conversely a
render method may be used by more than one art asset.

The resulting system is fast and flexible. It has shown itself to be
as fast or faster than the custom engines the various product teams
were using before adopting our system. At the time of submis-

Copyright © 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1 (212-869-0481 or e-mail p rmissions@acm.orge .
© 2002 ACM 1-58113-521-1/02/0007 $5.00

713

Front End

Back End

0010101001
0100100001
1111101011
1001011101
11101010

Byte Code
Interpreter

Rendering
Hardware

Frame
Buffer

Compiler

Runtime

Shaders
Byte code,
hardware specific
data structures,
and shaders

Packets made
of fragments of
art asset using
a single render
method

Art assets and
render methods

Runtime
evaluation

Figure 1: Art asset compilation process in context

sion the system has been used in 10 successful video game titles, in
differing genres, on 4 platforms, with close to 30 more titles in de-
velopment. Porting our system to a new platform involves writing
new implementations of the runtime and compiler back end, and a
new suite of core render methods. This amounts to approximately
3 man-months of work. In our experience this is significantly faster
than porting a custom game engine and tool suite to new hardware.

1.1 Contributions

Our system, illustrated in Figure 1, makes three contributions. First,
we describe an extension of shader specifications, called theren-
der method, that includes declaration of shader input variables and
off-line computations to generate these variables from an art asset.
Second, we describe a compiler front end that takes as input polyg-
onal geometric data and model attributes and produces segmented,
geometrically optimized asset fragments, calledpackets, represent-
ing individual calls to the render methods. Alternative front ends
are easily constructed to address non-polygonal data, such as spline
surfaces or particle systems. Third, we describe the back end of our
asset compiler that takes packets generated by the front end, and
generates optimized code and data streams used to render the asset
at runtime.

2 Background

Two bodies of work are relevant to the discussion of our art asset
compiler. The first is the recent work done on compiling shading
languages. The second relates to display lists.

2.1 Shading languages

Shading languages are an outgrowth of Cook’s shade trees [Cook
1984] and Perlin’s pixel stream language [Perlin 1985]. They are
now most commonly used in the form of the RenderMan Shading
Language [Hanrahan and Lawson 1990; Apodaca and Gritz 1999].
Shading languages have recently been adapted to real-time render-
ing graphics hardware applications.

Olano and Lastra [Olano and Lastra 1998] were first to describe
a RenderMan-like language whose compilation is targeted to spe-
cific graphics hardware, in their case the PixelFlow system [Molnar
et al. 1992]. PixelFlow is by design well suited to programmable
shading but is very different from today’s consumer level hardware.

id Software’s Quake III product incorporates the Quake Shader
Language [Jaquays and Hook 1999]. Here, shader specifications
are used to control the OpenGL state machine. The shader language
specifies multi-pass rendering effects involving the texture units,
allowing the coupling of application variables to the parameters of
the various passes.

Peercyet al. observed that treating the OpenGL state ma-
chine as a SIMD processor yields a framework for compiling
the RenderMan Shading Language. They decompose RenderMan
shaders into a series of passes of rendering, combined in the frame
buffer [Peercy et al. 2000].

Recently, Proudfootet al. [Proudfoot et al. 2001], have devel-
oped a shader language compiler that uses the programmable ver-
tex shaders available in DirectX 8 [Microsoft 2000] and NVIDIA’s
NV vertexprogram OpenGL extension [Lindholm et al. 2001], and
the the per-fragment operations provided by modern texture com-
biner hardware. By taking into account the multiple levels at which
specifications occur (object level, vertex level, or pixel level), they
successfully exploit the hardware features at those levels.

In all the above shader compilers geometric data is communi-
cated to the shader through the underlying graphics API, as per the
RenderMan model. In RenderMan both the geometry and its bind-
ings to shaders is specified procedurally using the RenderMan Inter-
face Specification. Likewise, Olano and Lastra’s, and Proudfootet
al.’s systems bind shaders to geometry through the OpenGL API.
This requires either an external system to manage the binding of
shaders to geometry or else explicit application code per art asset to
manage the bindings. These programs are more complex than they
might appear at first glance, since they require both runtime code to
manage the bindings, as well as synchronized tool code to generate
the appropriate data for the runtime.

We have chosen to manage the binding of geometry to the shader
explicitly in our art asset compiler. This provides us with three
principal benefits. First, user code specific to a particular asset is
only required if there are explicit exposed runtime shader parame-
ters (§4.3). Second, as a corollary to the first, an artist can quickly
iterate an art asset on the target platform without programmer in-
tervention. Third, the runtime API is dramatically simplified, since
all geometry specification and binding is performed off line. We
do provide tools for generating bindings at runtime, but this use is
discouraged as suchdynamic modelsare considerably less efficient
than our compiled models (§3.2).

2.2 Display lists

Art assets are produced in 3D modeling and animation packages.
These packages are usually oriented toward interactive manipula-
tion of geometry data and off-line rendering of the resulting objects.
They have rich feature sets for manipulation of geometry, topology,
shading, and animation. However, the raw output models are rarely
suited to consumer level hardware. Assets must be authored with
sensitivity to their eventual use in real-time consumer-level applica-
tions. The assets must be not only converted from the rich descrip-
tion stored by the packages, but also optimized and targeted to the
hardware and software architectures of the application. These pre-
processing operations range from simple data conversion through
to complex re-ordering and optimization tasks. Hoppe showed how
re-ordering the vertices in triangle strips could yield more efficient
rendering by exploiting hardware vertex caches [Hoppe 1999]. Bo-
gomjakov and Gotsman showed how to exploit the vertex cache
using vertex meshes instead of triangle strips, without knowing

714

a priori the size of the cache [Bogomjakov and Gotsman 2001].
Both these approaches can yield two-fold improvements in render-
ing performance over using the original input data.

No matter the level of geometric optimization, however, some
level of optimization of graphics hardware setup and rendering sub-
mission is required to obtain best performance. Early graphics APIs
were oriented to drawing individual polygons [Barrell 1983]. The
first version of OpenGL was similarly limited, leading to high func-
tion call overhead on polygon submissions. The OpenGL vertex ar-
rays mechanism, presented in OpenGL 1.1, removed much of this
overhead by allowing bulk specification of polygons [OpenGL Ar-
chitecture Review Board et al. 1999]. DirectX 8’s vertex streams
operate on the same principle [Microsoft 2000].

Although vertex arrays speed submission of geometry data, the
various state setting functions in OpenGL and DirectX 8 still re-
quire considerable overhead. Both support display lists, used to
collect both geometry and state setting calls for later atomic re-
submission. Although these display lists have the potential for con-
siderable optimization at the driver level, their construction at run-
time, with the ensuing performance limitations, limits the degree to
which display list optimization can be taken. In particular, parame-
terized display lists are problematic. Although a single display list
cannot be parameterized a display list may call one or more dis-
play lists which may have been re-built since the original display
list, allowing simple parameterization. This architecture does not,
however, allow the driver to optimize state changes across such a
nested display list call, as the newly defined list may affect any of
the state that had been set in the parent display list. IRIS Performer
[Rohlf and Helman 1994] showed how to use a hierarchical data or-
ganization to optimize away redundant state manipulations during
rendering, but forces a direct-mode geometry submission model on
the application, reducing the optimizations possible in display list
construction.

We have chosen to construct our rendering objects off-line, and
to address parameterization of these objects through runtime link-
age of external variables to our rendering objects and by exporting
various part of our objects to the runtime for modification (§4.3).
Both methods allow aggressive optimization around parameterized
elements of our models.

3 Runtime Environment

To make our discussion of our art asset compiler concrete we briefly
describe the runtime environment that our compiler targets.

3.1 The influence of the hardware environment

The target environment for our compiler consists of a particu-
lar hardware rendering platform, together with a runtime library
on that platform. We implemented our runtime and compiler on
four platforms: Sony PlayStation2TM(PS2), Microsoft XBOXTM,
Nintendo GameCubeTM(NGC), and DirectX 8 PC platforms. Al-
though these architectures differ substantially[Suzuoki et al. 1999;
Lindholm et al. 2001; Microsoft 2000], they share some fundamen-
tal characteristics. These are:

• The CPU and GPU are separate processors that are connected
by a relatively narrow bus.1

• The GPU is user programmable.2

1Even with its Unified Memory Architecture, running at AGP 4x speed,
the XBOX still has limited bus bandwidth to the GPU.

2This is not strictly true in the case of the Nintendo GameCube, but a
rich set of predefined computational elements is available.

• The platforms have varying levels of texture combining sup-
port, but all texture combining occurs as a post GPU stage
with no feedback to the GPU or CPU.3

Keeping these characteristics in mind, we want to avoid CPU
operations of the form read/compute/write/submit–to–GPU which
require at least 3 times the bus traffic of a submission of static ver-
tices to the GPU. Therefore, we privilege geometries with static
vertex data and topologies. This is not to say that we do not sup-
port animation — many deformations can be applied in the GPU
and pixel combiners without requiring the CPU to modify the in-
put data. In particular, we fully support hierarchical coordinate
frame animation [Stern 1983] with an arbitrary number of coordi-
nate frames, including weighted skinning [Terzopoulos et al. 1987;
Lander 1998].

3.2 The runtime API

Our runtime environment presents a small C++ API to the user, ori-
ented toward drawingmodels as primitive objects. Amodel is a
collection of geometric primitives (e.g., triangles, b-splines, points,
etc.) and state objects (rendering states, textures, etc.) bound to
the shaders required to draw them with predetermined effects. A
model is segmented intogeometries, each of which can be indepen-
dently turned on or off. Geometries and models map directly to art
assets input to the compiler. Each run of the art asset compiler gen-
erates a single model, containing one or more geometries. Models
may expose a set of control variables to the user (§4.3). Drawing a
model is done by setting the required control variables and calling
the model’sDraw method. It is only necessary to set the control
variables when their value changes as the system retains their val-
ues. This is the mechanism used to control animations as well as
other dynamic rendering effects.

The API does not expose polygon rendering calls. The user
can construct models procedurally using an API similar to the
OpenGL vertex array construction [OpenGL Architecture Review
Board et al. 1999]. These are referred to asdynamic models, and
have worse rendering performance than our compiled models.

Apart from the model rendering, we also manage the usual
house-keeping operations such as setting up the hardware for ren-
dering. As well, we provide utility functions to manipulate hard-
ware state objects and textures. Note that these objects reside in the
compiled models, but may be exposed to the user. We also provide
a viewport and camera abstraction as a convenience to the user, but
these may be replaced if desired. Finally, we provide an animation
engine that interfaces with models via their exposed control vari-
ables. The details of this system are not of interest in this paper.

4 Render Methods

A render method consists of a specification of a set of variables and
a shader program that uses these variables. Render methods are de-
signed to be sufficiently abstract that the same render method can be
used over a wide range of art assets. Conversely, some render meth-
ods are written to address a problem present in a specific art asset.
Our compiler architecture allows us to apply the render method to
any art asset that has the data necessary to satisfy the shader input
variables.

Figure 2 shows a simple example that implements gouraud shad-
ing on the PS2.4 The inputs section describes the variables

3Such feedback is possible, and can be exploited by our shaders on some
platforms, but are managed externally from our art asset compilation pro-
cess.

4This is not the optimal gouraud shading code, there being many data
optimizations required to achieve peak performance.

715

#include "types.rmh"
rendermethod gouraud {

inputs {
Coordinate4 coordinates;
Char geometry_name;

}
variables {

int nverts;
extern volatile Matrix xform_project

= Viewport::XFormProject;
PackCoord3 coords[nElem]

= PackCoordinates(coordinates);
ColourARGB colours[nElem];
export modifiable

State geometry_name::state;
noupload RenderBuffer output[nElem];

}
computations {

TransformAndColour(nverts, coords,
colours, xform_project, output);

XGKick(geometry_name::state);
XGKick(output);

}
}

Figure 2: A simple render method

made available to the render method from the art asset. The
variables section describes the variables used by the shader.
Thecomputations section describes the shader program.

4.1 Types

Because we use render methods to bind arbitrary geometric data di-
rectly to shaders, variables in both theinputs andvariables
sections are typed. This assures that data presented to the shader
are in the form required. Types are user extensible and given in the
render method specification. Type definitions are platform specific,
and include such properties as the size of object in CPU memory,
the size in GPU memory, hardware states required to transfer the
type from CPU to GPU, and so on. The information about a type
allows the compiler to manipulate the elements of the art asset with-
out assumptions about them. We provide an identical set of base
types on all platforms. A full description of the type construction
system is beyond the scope of this paper.

4.2 Inputs

The inputs section declares the types of the data elements re-
quired by the render method. We call theseinput variables. In
this example, thecoordinates input variable is declared with
type Coordinate4 . This variable can then be referenced in a
converter, a data manipulation program executed to construct data
images for the variables section, further described in the next sec-
tion. The input declaration can be accompanied by an explicit value
to assign to the variable, which is used if the art asset does not pro-
vide such an input. Input data from the art asset are bound by name
to each such input variable. The variables provided by our compiler
include vertex and material data from the art asset, as well as arbi-
trary data the user may have tagged on vertices and materials. This
allows easy extension of our compiler’s functionality through sim-
ple naming conventions binding the user data to the render method
inputs.

4.3 Variables

Thevariables section declares the data that are available to the
computations. Variables are tagged with a particular type and a
number of elements as an array specification. In the absence of an
array specification a length of one is assumed. The special array
lengthnElem is a key for a simple constraint system to maximize
the number of elements within the constraints of the hardware.

All variables (save those tagged as temporaries by the
noupload keyword) have values derived from the inputs declared
in theinput section. When an explicitconverteris specified using
the = Converter(params,...) syntax, the converter func-
tion (dynamically loaded from a user-extensible library) is executed
with the given parameters. The parameters are themselves either
the result of a conversion function, or an input variable. In the ab-
sence of an explicit converter specification, the identity converter
is assumed. The converter mechanism allows simple compile-time
manipulations of the data elements. Typical uses include, as in our
example, data packing operations, as well as various re-indexing
tasks, and various pre-processing operations such as binormal vec-
tor generation or colour balancing. Since shaders are tightly cou-
pled to art assets through our compiler, it makes sense to move as
much shader-specific pre-processing into these converters as possi-
ble, making the art conversion process as uniform as possible for
differing assets and shaders.

Not all variables used by a shader can be made available through
a compiler pre-process, however. For example, data such as trans-
formation matrices are not available at compile time. They could
be communicated as implicit variables. This would restrict the user
from extending the set of such variables. Instead, we chose to ex-
tend our render method specification through external linkage. By
adding theextern keyword to a variable declaration along with an
assignment of the form= variable_name , a reference is made
to an external variable namedvariable_name . In our example
in Figure 2 the runtime will be responsible for replacing unresolved
references to the variable namedViewport::XFormProject
with a pointer to the actual runtime address of this variable. This
external reference is resolved when the asset is loaded. We store our
assets in ELF format [Tool Interface Standards 1998] and provide
the external linkage through our ELF dynamic loader. Our library
registers a number of variables with the dynamic loader, making
transformation matrices, for example, available to render methods.
The user may also, at runtime, register his own variables.

Because the GPU and CPU may operate in parallel, changes to
an externally linked variable on the CPU may lead to race con-
ditions. To eliminate the race condition without introducing un-
due locking restrictions, we would like copy the data elements that
might produce such a race. We do not want, however, to copy all
such variable data because of the overhead required. Instead we
explicitly flag the elements that might induce such a race with the
volatile keyword. The user may omit the keyword, causing use
by reference rather than copy, and more efficient execution. Omit-
ting thevolatile keyword on externally linked variables is gen-
erally risky, there being no control over allowed modification of
such variables.

Another important aspect of our variables is that they are, in gen-
eral, opaque to the runtime. It is not possible to examine or set
values inside our compiled art assets, since the compiler may have
re-ordered, simplified, or otherwise hidden the data elements. Al-
though this restriction leads to greater rendering efficiency, it is not
sufficiently flexible. There is frequently need to examine, on the
CPU rather than in the render method, data stored in a model. In
many cases it is useful to export control variables, that unlike exter-
nal variables, reside with and in the art asset. Then the user does not
need to construct, register, and manage these variables at runtime.

Variables are declared exported in the render method by prefix-
ing the declaration with the keywordexport . As the compiler

716

emits data that is marked as exported, it adds an ELF symbol refer-
ence to the variable, along with its name, to a dictionary associated
with each model. At runtime the user can query the models dic-
tionary to find the address of a particular variable. In general this
is an iteration over a number of variables with the same name. If
a variable shares the same name and binary image, only one ver-
sion of that variable is added to the dictionary. If the binary images
differ but the names are the same, both are added, with the same
name. Since these names occur in each packet compiled with the
same render method, some system is required to differentiate them.

To allow the user to distinguish between these variables, a name
extension mechanism is provided. String variables can be referred
to in the variable name to extend the variable name at compile
time. For example, in Figure 2 thestate variable is extended
with the contents of the string variablegeometry_name . These
string variables are communicated using the same mechanism as
any other inputs, and so can be generated by the compiler front
end, or be strings of user data attached to the material or the input
model. This name extension mechanism can be used to implement
a scoping system for variables. Our compiler front end provides
scoping at the level of the Model, Geometry and packet. The user
can easily manage additional levels of scoping by tagging their art
asset in the original authoring package.

Although the exported variables dictionary returns a pointer to
the exported variable, costs are associated with allowing modifi-
cation of compiled data. For example, on PC class architectures,
vertex data is duplicated into memory that cannot be efficiently
accessed from the CPU, but is very fast for the GPU. Therefore
modifications to this data by the CPU require the data to be copied
again. Such performance costs led us to require a formal declara-
tion of which elements are to be modifiable at runtime, using the
modifiable keyword, and we prohibit modification of data not
so flagged. The dictionary maintains a flag indicating the modifi-
able status of a variable, and enforces the restriction on modifica-
tion using the C++ const mechanism. The use of themodifiable
flag is orthogonal to thevolatile flag. This allows use by ref-
erence of exported modifiable data when this is appropriate (infre-
quent changes to large data structures), while still allowing use by
copy when necessary (re-use of a model in the same frame with
differing parameter settings, frequent changes). This modification
mechanism gives us functionality equivalent to parameterized dis-
play lists, constructed off-line in our compiler, and suitably opti-
mized.

One simple extension made possible by the exported variables
dictionary, is a runtime GUI tool to remotely view and modify the
exported variables associated with a model. This allows an artist
or programmer to tweak the appearance and behavior of the model
without recompiling the art asset. The compiler can in turn take the
saved data from this tool as input to a later compilation of the same
art asset, or indeed other art assets with similar layout.

4.4 Computations

Rather than introduce a new shader language, our system uses the
native shading languages on each target platform, plus a macro ex-
pansion system to connect the variables to the shader program. To
make it easier to write render methods we break up complex shaders
into reusable parameterized macros. The macros are defined in ex-
ternal files and are catenated and assembled into machine specific
shader programs. A parameter passing convention binds the vari-
ables and relevant type information to the parameters of the macros.
This lets the user quickly prototype new effects using existing pro-
gram fragments. However, highly optimized shaders require hand
crafted shader programs. Shader compilers, such as those of Proud-
foot, et al. [Proudfoot et al. 2001] or Peercy, et al. [Peercy et al.
2000] could be adopted into this architecture at this level.

Our example in Figure 2 shows a simple computations section
in which a transform with colour-per-vertex function is called, fol-
lowed by twoXGKick blocks. These latter PlayStation2-specific
computations initiate a transfer of values from the PlayStation2
Vector Unit to Graphics Synthesiser hardware registers, kicking off
the rasterization stage of the graphics pipeline.

5 Compiler Front End

The front end of the compiler takes an art asset and constructs the
series of packets required to render it. Our front end deals exclu-
sively with art assets that are composed of polygons, although other
front ends have been written to deal with other kinds of data such as
spline surfaces, particle systems, custom terrain meshes, and cus-
tom city rendering systems.

Our front end breaks the art asset into geometries, which have
been defined by the artist. Within each geometry the polygons are
collected and classified by material and vertex properties.

Materials are intrinsic to the asset editing packages we use and
can contain arbitrary user defined data, as well as the standard pre-
defined material properties. The front end is also responsible for
identifying materials that are in fact identical and merging them.

A vertex consists of the usual properties, such as a position, tex-
ture coordinate set, normal, and so on, but can also include arbitrary
user defined data.

Having grouped polygons intoclassesthe compiler must select a
render method to associate with each class. Each class consists of: a
set of material properties each with a name; a collection of vertices
consisting of a set of named data elements, and a collection of poly-
gons composed from the vertices. The basic mechanism to select a
render method is to iterate over a list of available render methods
until one is found whose undefined inputs can be satisfied by the
available data in the class. To provide finer control the material can
also be tagged with a requested render method. If the requested ren-
der method’s undefined inputs cannot be satisfied by the available
data, then the default mechanism is applied and a warning is issued.

Once a class has been associated with a render method, the com-
piler must construct one or morepacketsfrom the data in the class.
This cutting of the data into smaller packets is a reflection of hard-
ware restrictions that limit the number data elements that can be
transfered to the GPU. On some platforms this is a hard limit based
on the size of GPU memory, on others it is an empirically deter-
mined point of best efficiency. Some platforms differentiate be-
tween streams of data and constant elements. For example, PlaySta-
tion2 has a fixed size limit for one packet, including matrices, state
information, as well as stream oriented data such as positions, tex-
ture coordinate sets, and normals. All these elements must fit in 512
quadwords, including the output buffers. On the XBox and PC how-
ever, there is a differentiation between stream data and other values
— streams may be of near-arbitrary length, but the other data, as
they are stored in shader constant registers, are limited to 192 quad
words per packet on XBox and 96 on PC. These restrictions are
reflected in the segmentation computation. Once constructed the
packets are passed to the packet compiler layer (§6).

The process of partitioning the data in the class into packets in-
cludes the process of performing triangle stripping or mesh reorder-
ing [Hoppe 1999] for efficient rendering of the underlying poly-
gons, and may require the cloning of vertex data that must appear
in more than one packet.

A significant step in our packetization process is the association
of multiple coordinate frames with the vertices. Our character an-
imation system allows for each vertex to be attached to one of a
large set of coordinate frames. These coordinate frames are in turn
constructed out of a linear combination of a smaller set of coordi-
nate frames that represent an animation skeleton. Because of mem-
ory limitations on the GPU we must limit the number of unique

717

coordinate frames that appear in each packet. We refer to this set
of coordinate frames as thematrix set. This transforms our mesh
optimization step into a multi dimensional optimization problem:
simultaneously minimize the number of vertex transforms required
on the hardware, and the number of matrix sets induced. Often
a strip cannot be extended with a particular triangle because this
would cause the matrix set required for the packet to exceed the
maximum matrix set size. Effective algorithms to solve this multi-
dimensional optimization problem are an area of active research.

6 Packet Compiler

Emitting a list of packets that are interpreted at runtime leads to
poor runtime performance. There are two approaches to optimizing
such a scheme. The usual approach is to optimize the runtime envi-
ronment, implementing such strategies as minimizing modification
of hardware state, re-ordering rendering by texture usage, caching
computation results for reuse and so on. However, many of these
optimizations can be performed off-line because the data to be ren-
dered is known ahead of time.

The packet compiler is responsible for transforming the packets
generated by the front end into data and associated code that can
be executed to render the art asset without any external intervention
by a programmer. The code generated by the packet compiler is
an optimized program tailored to render exactly the input art asset.
Note that the packet compiler uses no information about the topol-
ogy. Hence, it can be used to compile arbitrary data sets, not just
polygonal data sets.

The form of the output is radically different across platforms.
Despite these differences, there is a common structure in the back
end of the compiler. The back end always generates a model ob-
ject which contains the following: a pointer to abyte codestream
that must be executed to render the model; a dictionary pointing to
the data exported from the render methods used in the packets rep-
resenting the model; and external references to imported data that
will be resolved to pointers at load time. These might occur in the
byte code, or in other hardware specific data structures. Addition-
ally, the byte code contains references to the hardware specific data
structures that contain the information required for rendering.

For each platform hardware specific optimizations for rendering
speed are performed on the byte code and data structures generated.
These optimizations largely rely on the knowledge that the render-
ing of a model can be treated as an atomic operation and the state
of the hardware is therefore fully controlled between each packet
submitted to the hardware in the rendering of the model.

The back end is structured in several passes as follows.

Pass 1:Packet ordering.
Pass 2:Variable data construction.
Pass 3:Export data accumulation.
Pass 6:Data structure generation.
Pass 5:Code generation.
Pass 6:Global optimizations of data structures and code.
Pass 7:Code and data emission.

In the remaining subsections we examine these passes in more
detail. As the final pass is largely self evident we omit further de-
scription.

6.1 Packet ordering

To use the underlying hardware efficiently, we reorder packets to
minimize expensive changes in the hardware state. We restrict re-
ordering to allow the user to retain control of rendering order. In
particular, we guarantee that the geometries of a model will be ren-
dered in the order they appear in the art asset. Currently we imple-

ment a simple heuristic to minimize expensive state changes. We
group packets first by geometry, then by render method, then by
textures, and finally by matrix set. A more sophisticated compiler
might examine the generated code stream and model the cost of its
operations to determine the best possible data ordering.

6.2 Variable data construction

The front end provides the back end with a list of packets, each of
which has an associated render method and set of input data. The
input data is not what is ultimately fed to the shader, and therefore
it must be converted into the data defined in the variables section
of the render method associated with the packet. This is accom-
plished by executing the converter functions specified by the render
method. The result is aninstantiated packet. In an instantiated
packet the data for every variable is either known, or an external
symbolic reference is known that will resolve to the memory loca-
tion of that data at run time. We refer to variables that have fully
known data contents ashard data. Variables that are only defined
by extern declarations (imported data) are calledsoft data. At
this stage, the compiler also assigns symbolic names to every vari-
ables data. These symbolic names are used to refer to the memory
location containing the data, and are used in the remaining passes
whenever a direct reference to the data must be generated. In the
case of soft data the symbolic name is the name defined by the
extern declaration in the render method.

Although symbolic names are assigned to each block of data at
this point, the data itself is neither emitted nor placed into specific
data structures. This is done in the data structure generation pass,
described in§6.4.

6.3 Export data accumulation

This pass accumulates the dictionary data structure associated with
the model that can be used at runtime to find exported variables.
The symbolic names assigned to data in the prior pass are used here
to fill in pointers in the resulting dictionary.

6.4 Data structure generation

In this pass we create the rendering data structure that holds the
hard and soft data refered to by the instantiated packets. On many
of our target platforms, we wish to feed the underlying rendering
hardware as directly as possible. This allows us to avoid device
driver overhead and unnecessary manipulation of the data. We ac-
complish this by building the data structures in as near native form
as possible.

For example, on the PS2, a chained direct memory access
(DMA) unit feeds data to the GPU in parallel with CPU operations.
The DMA unit supports a nested CALL structure, much like a pro-
cedure call. This allows us to pre-build large fragments of the DMA
chain with the rendering data embedded in the DMA chain. One ad-
vantage of this is that the CPU need not ever touch the data in these
pre-assembled DMA fragments, only chain together CALL opera-
tions to the DMA fragments at render time. Another advantage is
that memory overhead required for model submission is lowered,
because extra copies of the data are not required.

On the Gamecube we construct a similar data structure that feeds
the hardware directly. On the XBOX and PC we pre-assemble ver-
tex buffers and hardware command streams.

6.5 Code generation

In the code generation pass we generate a byte code program for
each instantiated packet that performs the set of CPU operations
required to render the data contained in the packet. In the next pass

718

the byte code programs are catenated and global optimizations are
performed over the resulting program.

We choose to use a byte code to express these programs, rather
than native assembly instructions. The overhead in interpreting the
byte code is minimal and is offset by the fact that the byte code
interpreter fits into the instruction cache on the CPU. In fact, on
some hardware the byte code interpretation is faster than executing
a stream of in-line machine instructions. This is due to a reduction
in instruction cache misses and procedure calls. Furthermore, byte
code has two major advantages. First, programs in the byte code are
very compact. Second, because the instruction set of our byte code
is very small (10 – 20 instructions, depending on the platform), it is
easy to write an optimizer for the byte code.

The instruction set for a platform depends on the underlying
hardware. For example, on the PS2 we submit a single DMA chain
to the hardware encoding the rendering for an entire scene. The
byte code instructions on this hardware perform simple operations
geared toward assembling this DMA chain, as well as some more
CPU intensive operations that generate data that is needed in the
DMA chain. Examples of the former operations include placing
a call to a fixed chunk of DMA data into the chain, and copying
volatile data directly into the chain. Examples of the later include
uploading a new vertex shader program to the hardware, and com-
puting matrix set sets for an animated object from animation data.
On platforms that have more of an API between us and the hard-
ware, the byte code closely corresponds to the calls to the under-
lying rendering API, for example, setting of vertex streams, state
setting calls, and rendering submission instructions.

6.6 Global optimizations

The specific optimizations performed in this pass are dependent
upon the nature of the target platform. We classify these optimiza-
tions into two classes: data transfer optimizations and redundant
code removal.

In performing data transfer optimizations we seek to remove re-
dundant transfers of data to the GPU. This is really a special case
of redundant code removal. We do this by simulating the contents
of the GPU memory over the execution of the rendering of a model,
and noting uploads that do not change the memory image. For ex-
ample, this optimization step removes the redundant setting of the
transformation matrix from one packet to the next.

Because we do not simulate the GPU execution in detail, only
the uploading of data to the GPU, we require hints to tell us when
the GPU will modify the contents of a memory location, forcing
us to upload into that location. We have two keywords to tag a
render method variable as hints to the optimizer:noupload and
transient . The noupload keyword indicates that a variable
is a temporary variable to be used by the GPU as needed. The
transient keyword indicates a variable that must be set before
the shader program is run, but that will be modified by the execution
of the shader program.

Along with data upload optimization, we consider similar op-
timizations of machine register setting instructions and byte code
instructions. For example, on the PS2 we note successive pack-
ets that occur with only a CALL instruction in their byte code and
merge the DMA chains for the packets together. This can result
in very large models that are submitted with only a few byte code
instructions.

As another example, on the PS2 the data transfer mechanism is
itself a state machine that must be appropriately set to decode the
data as it is fed to the GPU. In this case we simulate the data transfer
hardware to find the minimal set of register changes required to set
the data transfer hardware into the desired state. This can account
for as much as a 20% reduction of the rendering time on the PS2.

Many other specific optimizations are used on the various plat-
forms we support. We omit further details due to space constraints.

7 Results and Conclusions

Table 1 summarizes some typical performance numbers achieved
by our system. These figures are sustainable throughput rates for
production art assets. For the sake of comparison, we also include
figures for the Stanford Bunny model. The CPU is largely idle in
these examples, as would be required to allow for an interactive ap-
plications use of the CPU. The bottle necks on these systems are
generally in the bus to the GPU, and the transformation and raster-
ization engines. In some cases, better performance numbers can be
achieved by intensive use of the CPU, but this would not represent
the usage we expect. In our experience the performance achieved
by our system is as good or better for throughput, and much better
on CPU usage than the custom rendering engines it has replaced.

The system has shown itself to be easy to port to new and dif-
fering architectures. Originally designed for the PS2, ports to the
XBox and GameCube took approximately 3 man months each. For
each platform this involved writing a new runtime, a new compiler
back end, and a suite of render methods.

Porting a product that uses our system from one platform to an-
other has been easy. Turn around times of as little as a week have
been achieved with full products. More commonly a product port
takes about a month, including required revisions to art assets to
take into account platform performance differences.

The render method paradigm has also proved successful, with
users greatly extending the functionality of the system by writing
their own render methods. This has included such features as a
crowd rendering system (seen in figure 3), multiple particle systems
(an example is seen in figure 4), as well as specialized multi-texture
and multi-pass effects.

Additionally, when our compiler front end semantics have been
insufficient to support the needs of the user, new front ends have
been developed and successfully deployed. For example, the
cityscape seen in figure 4 contains many objects that share sub-
stantial portions of their geometric data. A custom front end was
written that allowed this data to be shared across models using the
hooks provided to externally linked variables. In another case, a
front end for a custom landscape patch rendering system was writ-
ten and deployed in less than a week.

There are several potential future extensions to the system that
we have considered. The existing mesh generation algorithm is not
optimal in the presence of matrix set constraints. As previously
mentioned, better algorithms for this problem are an active area of
research. Our heuristic for ordering packets is simplistic at best, and
should be replaced by an optimization scheme that attempt to find
the ordering with minimal execution cost. One area of weakness in
the current system is that dynamic models (those constructed at run-
time) do not perform as efficiently as compiled models. To address
this a light weight version of the compiler should be integrated into
the runtime. Finally, render methods are currently platform spe-
cific. The work on shading language compilers should be adopted
into our render method scheme to allow them to become cross plat-
form specifications.

References
APODACA, A. A., AND GRITZ, L. 1999. Advanced Renderman: Creating CGI for

Motion Pictures. Morgan Kauffman Publishers.

BARRELL, K. F. 1983. The graphical kernel system - a replacement for core.First
Australasian Conference on Computer Graphics, 22–26.

BOGOMJAKOV, A., AND GOTSMAN, C. 2001. Universal rendering sequences for
transparent vertex caching of progressive meshes. InProceedings of Graphics In-
terface 2001, 81–90.

719

Platform Gouraud Lit Skinned Gouraud

PS2 17.0/22.6 10.9/14.7 8.5/11.5 25.2/31.8
XBox 47.2/91.4 22.4/43.4 14.2/30.3 63.9/93.8
NGC 18.7/NA 10.3/NA 7.2/NA NA/NA
PC 24.1/46.1 15.9/20.9 5.1/10.9 26.3/36.2

Table 1: Performance figures of our system, in millions of polygons
per second and vertex indices submitted per second. The player
is a 3998 polygon model, drawn without texture or lighting, with
textures and lighting, and skinned with textures and lighting. The
bunny model is 69451 polygons. Bunny model courtesy of the Stan-
ford Computer Graphics Laboratory. The PC is a 1.4Ghz AMD
Athlon with an ATI Radeon 8500 graphics accelerator.

Figure 3: A screen capture of a PS2 application using our system,
demonstrating skinning for the characters, a lit stadium, and a cus-
tom crowd renderer, all implemented as render methods.

Figure 4: Another scene using our system, showing cityscape gen-
erated by a user-developed alternative compiler front end, and a
particle system.

COOK, R. L. 1984. Shade trees. InComputer Graphics (Proceedings of SIGGRAPH
84), vol. 18, 223–231.

HANRAHAN , P.,AND LAWSON, J. 1990. A language for shading and lighting calcu-
lations. InComputer Graphics (Proceedings of SIGGRAPH 90), vol. 24, 289–298.

HOPPE, H. 1999. Optimization of mesh locality for transparent vertex caching.Pro-
ceedings of SIGGRAPH 99(August), 269–276.

JAQUAYS, P.,AND HOOK, B. 1999. Q3radiant shader manual.

LANDER, J. 1998. Skin them bones: Game programming for the web generation.
Game Developer Magazine, 11–16.

L INDHOLM , E., KILGARD , M. J., AND MORETON, H. 2001. A user-programmable
vertex engine. InProceedings of SIGGRAPH 2001, ACM Press / ACM SIG-
GRAPH, Computer Graphics Proceedings, Annual Conference Series, 149–158.

M ICROSOFT. 2000.DirectX 8 Programmer’s Reference. Microsoft Press.

MOLNAR, S., EYLES, J.,AND POULTON, J. 1992. Pixelflow: High-speed rendering
using image composition. InComputer Graphics (Proceedings of SIGGRAPH 92),
vol. 26, 231–240.

OLANO , M., AND LASTRA, A. 1998. A shading language on graphics hardware: The
pixelflow shading system. InProceedings of SIGGRAPH 98, ACM SIGGRAPH /
Addison Wesley, Orlando, Florida, Computer Graphics Proceedings, Annual Con-
ference Series, 159–168.

OPENGL ARCHITECTURE REVIEW BOARD, WOO, M., NEIDER, J., DAVIS , T.,
AND SHREINER, D. 1999. OpenGL Programming Guide: The Official Guide to
Learning OpenGL, Version 1.2. Addison-Wesley.

PEERCY, M. S., OLANO , M., A IREY, J.,AND UNGAR, P. J. 2000. Interactive multi-
pass programmable shading.Proceedings of SIGGRAPH 2000(July), 425–432.

PERLIN, K. 1985. An image synthesizer. InComputer Graphics (Proceedings of
SIGGRAPH 85), vol. 19, 287–296.

PROUDFOOT, K., MARK , W. R., TZVETKOV, S.,AND HANRAHAN , P. 2001. A real-
time procedural shading system for programmable graphics hardware. InProceed-
ings of SIGGRAPH 2001, ACM Press / ACM SIGGRAPH, Computer Graphics
Proceedings, Annual Conference Series, 159–170.

ROHLF, J., AND HELMAN , J. 1994. Iris performer: A high performance multipro-
cessing toolkit for real-time 3d graphics. InProceedings of SIGGRAPH 94, ACM
SIGGRAPH / ACM Press, Orlando, Florida, Computer Graphics Proceedings, An-
nual Conference Series, 381–395.

STERN, G. 1983. Bbop — a system for 3d keyframe figure animation. InIntroduction
to Computer Animation, Course Notes 7 for SIGGRAPH 83, 240–243.

SUZUOKI , M., KUTARAGI , K., HIROI, T., MAGOSHI, H., OKAMOTO , S., OKA ,
M., OHBA , A., YAMAMOTO , Y., FURUHASHI, M., TANAKA , M., YUTAKA , T.,
OKADA , T., NAGAMATSU , M., URAKAWA , Y., FUNYU , M., KUNIMATSU , A.,
GOTO, H., HASHIMOTO, K., IDE, N., MURAKAMI , H., OHTAGURO, Y., , AND

AONO, A. 1999. A microprocessor with a 128-bit cpu, ten floating-point mac’s,
four floating-point dividers, and an mpeg-2decoder. InIEEE Journal of Solid-State
Circuts: Special issue on the 1999 ISSCC: Digital, Memory, and Signal Processing,
IEEE Solid-State Circuits Society, 1608.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K. 1987. Elastically de-
formable models. InComputer Graphics (Proceedings of SIGGRAPH 87), vol. 21,
205–214.

TOOL INTERFACE STANDARDS. 1998. Elf: Executable and linkable format.
ftp://ftp.intel.com/pub/tis.

720

